首页 | 本学科首页   官方微博 | 高级检索  
     


Cost-effective CO2 emission reduction through heat,power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies
Authors:Johannes Schmidt  Sylvain Leduc  Erik Dotzauer  Georg Kindermann  Erwin Schmid
Affiliation:1. Doctoral School Sustainable Development, University of Natural Resources and Applied Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria;2. International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria;3. Mälardalen University, P.O. Box 883, SE-72123 Västerås, Sweden;4. Institute for Sustainable Economic Development, University of Natural Resources and Applied Life Sciences, Feistmantelstraße 4, A-1180 Vienna, Austria
Abstract:Bioenergy is regarded as cost-effective option to reduce CO2 emissions from fossil fuel combustion. Among newly developed biomass conversion technologies are biomass integrated gas combined cycle plants (BIGCC) as well as ethanol and methanol production based on woody biomass feedstock. Furthermore, bioenergy systems with carbon capture and storage (BECS) may allow negative CO2 emissions in the future. It is still not clear which woody biomass conversion technology reduces fossil CO2 emissions at least costs. This article presents a spatial explicit optimization model that assesses new biomass conversion technologies for fuel, heat and power production and compares them with woody pellets for heat production in Austria. The spatial distributions of biomass supply and energy demand have significant impact on the total supply costs of alternative bioenergy systems and are therefore included in the modeling process. Many model parameters that describe new bioenergy technologies are uncertain, because some of the technologies are not commercially developed yet. Monte-Carlo simulations are used to analyze model parameter uncertainty. Model results show that heat production with pellets is to be preferred over BIGCC at low carbon prices while BECS is cost-effective to reduce CO2 emissions at higher carbon prices. Fuel production – methanol as well as ethanol – reduces less CO2 emissions and is therefore less cost-effective in reducing CO2 emissions.
Keywords:Bioenergy  CO2 mitigation  Pellets  Biofuels  Combined heat and power  Bioenergy system with carbon capture and storage  Mixed integer program  Monte-Carlo simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号