首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the structural and reactants properties on the thermal characteristics of a premixed porous burner
Authors:MH Akbari  P Riahi
Affiliation:Department of Mechanical Engineering, Shiraz University, Shiraz 71348-51154, Iran
Abstract:Porous burners offer attractive features such as competitive combustion efficiency, high power ranges, and lower pollutant emissions. In the present study, the thermal characteristics of a porous burner are numerically investigated for a range of operating conditions and design specifications within a practical range. The premixed flame propagation of a methane/air mixture in a ceramic porous medium is simulated through an unsteady, one-dimensional model. The combustion process is modeled using a suitable single-step chemical kinetics. The reaction location is not predetermined, thus the flame is allowed to float within the solid matrix or to run off from either side of the porous medium. The numerical results indicate that flame stability and thermal characteristics of the burner are strongly dependent on the inlet mixture specifications and the solid matrix structural properties. For a fixed value of the inlet firing rate, the combustion products temperature will increase by an increase in the inlet gas temperature, an increase in the matrix porosity, or by a decrease of the matrix pore density. Among the geometrical properties, the burner length has virtually no effect on the burner performance. An increase in the solid matrix porosity or burner firing rate will increase the efficiency of the preheating zone, while increasing the inlet gas temperature or matrix pore density will cause a reduction in this efficiency. Simulation results also suggest that in order to prevent flame blow-out or flash-back, critical values of the burner settings and design parameters must be avoided.
Keywords:Porous burner  Thermal characteristics  Matrix structural properties  Reactants properties  Preheating zone efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号