首页 | 本学科首页   官方微博 | 高级检索  
     

基于独立分量分析的滚动轴承故障诊断
引用本文:李常有,徐敏强,高晶波,王日新. 基于独立分量分析的滚动轴承故障诊断[J]. 哈尔滨工业大学学报, 2008, 40(9): 1363-1365
作者姓名:李常有  徐敏强  高晶波  王日新
作者单位:哈尔滨工业大学,航天学院,哈尔滨,150001
摘    要:本文应用独立分量分析(ICA)将滚动轴承系统产生的声信号从传声器获取的声信号中分离出来,然后再采用基于morlet小波变换的包络分析进行再次降噪并获取特征信号,将此特征信号的特征频率与转子频率之比作为已经训练好的线性神经网络的输入向量,以对滚动轴承的运行状态做出判断.实验表明,此方法可靠、有效地诊断出了轴承的状态.

关 键 词:声信号  独立分量分析  故障诊断  滚动轴承

Fault diagnosis for rolling element bearings based on independent component analysis
LI Chang-you,XU Min-qiang,GAO Jing-bo,WANG Ri-xin. Fault diagnosis for rolling element bearings based on independent component analysis[J]. Journal of Harbin Institute of Technology, 2008, 40(9): 1363-1365
Authors:LI Chang-you  XU Min-qiang  GAO Jing-bo  WANG Ri-xin
Affiliation:(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)
Abstract:To overcome the difficulty in extracting the characteristic signals for fault diagnosis of rolling element bearings,the independent component analysis(ICA) was employed to separate the acoustic signals generated by the rolling element bearing system from the mixed acoustic signals collected by microphone.Envelope analysis based on morlet wavelet transform was used to denoise again and extract the fault feature signals.Then,the ratio of the fault feature frequency of the fault feature signals and the frequency of the rotation frequency of the rotor was served as the input parameter of linear neural network to identify the fault pattern of rolling elemental bearings.Experimental result shows that the fault diagnosis approach for rolling element bearings is effective.
Keywords:acoustic signal  independent component analysis  fault diagnosis  rolling element bearing
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号