首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于灰关联的序列模式挖掘算法
引用本文:刘旭,祁之力,谭立刚. 一种基于灰关联的序列模式挖掘算法[J]. 北京邮电大学学报, 2003, 26(3): 32-36
作者姓名:刘旭  祁之力  谭立刚
作者单位:北方交通大学,交通运输学院自动化系统研究所,北京,100044;中央民族大学,北京,100081
摘    要:序列模式挖掘算法多是利用了关联规则挖掘中的 Apriori特性 .利用灰关联方法对原始序列 进行净化处理 ,从而减少挖掘算法中的噪声数据 . 其理论依据在于 ,如果一个序列是频繁的 ,那么该序列的时间间隔也必然是频繁的. 利用了灰关联分析方法找出两个项之间的频繁时间间隔 ,再利用该间隔扫描事务序列数据库 ,从而最终找出频繁序列 .

关 键 词:数据挖掘  灰关联  序列模式
文章编号:1007-5321(2003)03-0032-05
修稿时间:2002-06-17

A Data Mining Algorithm for Sequence Pattern Based on Grey Association
LIU Xu,QI Zhili,T AN Li-gang. A Data Mining Algorithm for Sequence Pattern Based on Grey Association[J]. Journal of Beijing University of Posts and Telecommunications, 2003, 26(3): 32-36
Authors:LIU Xu  QI Zhili  T AN Li-gang
Affiliation:1. Automation System Institute of Transportation Department, Northern Jiaotong University, Beijing 100044, China; 2. Central University for Nationalities, Beijing 100081, China
Abstract:Most of the Sequence Pattern Mining (SPM)algorithm are using the Apriori characteristic of Association Rule Mining (ARM). The paper here mostly emphasises purifying the original sequence by making use of Grey Association(GA) method to reduce the noise data during the process of mining algorithm. The academic evidence here is that if a sequence was frequent then the time intervals between every two items included in the sequence were also frequent. Therefore, firstly the paper makes use of GA method to find the frequent time interval between two items in the sequence, then according to the frequent time interval scans the affair sequence database and finally finds out the frequent sequence.
Keywords:data mining  grey association  sequence pattern  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号