首页 | 本学科首页   官方微博 | 高级检索  
     


Mediation of entanglement and nonlocality of a single fermion
Authors:Bertúlio de Lima Bernardo
Affiliation:1.Departamento de Física,Universidade Federal da Paraíba,Jo?o Pessoa,Brazil;2.Departamento de Física,Universidade Federal de Campina Grande,Campina Grande,Brazil
Abstract:Entanglement is one of the most distinctive features of quantum mechanics and is now considered a fundamental resource in quantum information processing, such as in the protocols of quantum teleportation and quantum key distribution. In general, to extract its power in a useful form, it is necessary to generate entanglement between two or more quantum systems separated by long distances, which is not an easy task due to its fragility under environmental disturbance. Here, we propose a method to create entanglement between two distant fermionic particles, which never interact directly by using a third fermion to mediate the correlation. The protocol initiates with three indistinguishable fermions in a separable state, which are allowed to interact in pairs according to the Hong–Ou–Mandel effect. As a result, it is demonstrated that bipartite maximally entangled states can be generated with an efficiency of about 56%, which makes the method a potential candidate for practical quantum information applications. Furthermore, we use the same protocol to show how the mediator fermion exhibits nonlocal properties, giving a new insight on the long-standing discussion about nonlocality of a single particle.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号