Abstract: | The mechanical properties of films prepared from model high‐glass‐transition‐temperature (Tg)/low‐Tg latex blends were investigated with tensile testing and dynamic mechanical analysis. Polystyrene (PS; carboxylated and noncarboxylated) and poly(n‐butyl methacrylate‐co‐n‐butyl acrylate) [P(BMA/BA); noncarboxylated] were used as the model high‐Tg and low‐Tg latexes, respectively. Carboxyl groups were incorporated into the PS latex particles to alter their surface properties. It was found that the presence of carboxyl groups on the high‐Tg latex particles enhanced the Young's moduli and the yield strength of the PS/P(BMA/BA) latex blend films but did not influence ultimate properties, such as the stress at break and maximum elongation. These phenomena could be explained by the maximum packing density of the PS latex particles, the particle–particle interfacial adhesion, and the formation of a “glassy” interphase. The dynamic mechanical properties of the latex blend films were also investigated in terms of the carboxyl group coverage on the PS latex particles; these results confirmed that the carboxyl groups significantly influenced the modulus through the mechanism of a glassy interphase formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2788–2801, 2002 |