首页 | 本学科首页   官方微博 | 高级检索  
     


Optimization of a Continuous Precipitation Process to Produce Nanoscale BaSO4
Authors:M Pieper  S Aman  W Hintz  J Tomas
Affiliation:Otto‐von‐Guericke‐University, Mechanical Process Engineering, Magdeburg, Germany
Abstract:The effect of supersaturation, reaction temperature, and mixing intensity on particle size was investigated. Sterical stabilization of barium sulfate suspensions was applied to prevent formation of agglomerates. This allowed a reactant ratio of 1:1, thus maximizing product yield. The local supersaturation is strongly affected by the mixing intensity that can be characterized by Reynolds numbers. The significant decrease in particle size was observed by increasing the Reynolds number from 600 to 8000. A higher reactant concentration leads to a higher degree of supersaturation, and finer particles are precipitated. The particle size can be reduced with increasing reactant concentration. The degree of supersaturation increases with temperature reduction, i.e., the particle size will be reduced at low temperature. In addition, nucleation and growth kinetics are changed in a way that reduces the particle size. The optimized lab‐scale process is capable of producing over 1 kg h–1 of nanoscaled BaSO4 with a median diameter of 75 nm.
Keywords:Barium sulfate  Nanoparticles  Precipitation  Process optimization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号