首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal degradation behaviors of phosphorus–silicon synergistic flame‐retardant copolyester
Authors:Jun Li  Hongfang Zhu  Juan Li  Xinyu Fan  Xingyou Tian
Affiliation:1. Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China;2. Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
Abstract:A novel phosphorus‐containing poly (ethylene terephthalate) (PET) copolyester/nano‐SiO2 composite (PET‐co‐DDP/SiO2) was synthesized by in situ polycondensation of terephthalic acid (TPA), ethylene glycol (EG), (6‐oxide‐6H‐dibenzc,e] 1,2]oxaphosphorin‐6‐yl)‐methyl]‐butanedioic acid (DDP), and nano‐SiO2. The morphology of PET nanocomposites was observed by using transmission electron microscope and scanning electron microscope. It was found that the SiO2 nanoparticles were dispersed uniformly at nanoscale in the copolyesters with content 2 wt %. The thermal degradation behavior of PET nanocomposites was investigated by thermogravimetric analysis performed with air and nitrogen ambience. The activation energies of thermal degradation were determined using Kissinger and Flynn–Wall–Ozawa methods, respectively. The results obtained from Kissinger method showed that the activation energy was increased with the introduction of SiO2. Moreover, the activation energy is decreased for PET‐co‐DDP system in nitrogen and air. The results also indicated that the SiO2 and DDP had synergic effect on the early decomposition and the late charring in air. Furthermore, in the PET‐co‐DDP/SiO2 system, the activation energy increased when the DDP component increased. However, the opposite results were obtained when the Flynn–Wall–Ozawa method was used. That was because the Doyle approximation stands correct as the conversion degree is from 5% to 20%. The effects of SiO2 and DDP on the PET thermal degradation were lower in nitrogen than in air. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Keywords:copolyester  degradation  synergism  kinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号