首页 | 本学科首页   官方微博 | 高级检索  
     


Density functional modelling in multiphase compositional hydrodynamics
Authors:Alexander Demianov  Oleg Dinariev  Nikolay Evseev
Affiliation:Schlumberger Moscow Research, Department of Reservoir Physics, 5A Ogorodnaya Sloboda Lane, Moscow 101000, Russia
Abstract:This work is essentially a review of a density functional approach in multiphase hydrodynamics developed by the authors during the last 15 years [Dinariev, J Appl Math Mech 1995;59(5):745–752; Dinariev, J Appl Math Mech 1998;62(3):397–405; Demyanov and Dinariev, Fluid Dynam 2004;39(6):933–944; Demianov et al., “Basics of the Density Functional Theory in Hydrodynamics,” Fizmatlit, Moscow; 2009 (in Russian); Dinariev and Evseev, Fluid Dynam 2010;45(1):85–95]. The basic assumption is a representation of the entropy or the Helmholtz energy of the mixture as a functional that is dependent upon chemical component densities. The hydrodynamic system of equations (local conservation laws for chemical components, momentum, and energy) is used to describe multiphase processes, and the constitutive relations (expressions for stresses, diffusion, and heat fluxes) are derived from entropy growth requirement. The authors present the results of numerical simulations describing static and dynamic multiphase systems.
Keywords:density functional  multiphase hydrodynamics  phase transitions  interface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号