首页 | 本学科首页   官方微博 | 高级检索  
     


Improved parallel scan method for nanofriction force measurement with atomic force microscopy
Authors:Wang Yu-Liang  Zhao Xue-Zeng  Zhou Fa-Quan
Affiliation:School of Mechatronic Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China. wangyuliang2005@gmail.com
Abstract:Based on Ruan and Bhushan's study J. Ruan and B. Bhushan, J. Tribol. 116, 378 (1994)], an improved method for quantitative nano/microfriction force measurements with the atomic force microscope (AFM) is presented. The related theoretical derivation is given in detail. The coefficient of friction can be calculated by scanning in the direction parallel to the long axis of the AFM cantilever. Then conversion factor, which can convert the lateral deflection response of the photodetector into corresponding friction force, is identified with the Meyer and Amer method G. Meyer and N. M. Ame, Appl. Phys. Lett. 57, 2089 (1990)]. Like Ruan and Bhushan method, the advantage of this approach is that the coefficient of friction can be obtained with the plan-view geometry of AFM cantilevers and some common uncertainties, such as thickness, coating, and material properties, are not necessary. The result of the experiments performed utilizing rectangular cantilevers of different lengths shows that this improved method produces an accurate agreement for cantilevers of different lengths, thus the method can be used to measure nano/microfriction force.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号