首页 | 本学科首页   官方微博 | 高级检索  
     

IMM迭代扩展卡尔曼粒子滤波跟踪算法
引用本文:张俊根, 姬红兵. IMM迭代扩展卡尔曼粒子滤波跟踪算法[J]. 电子与信息学报, 2010, 32(5): 1116-1120. doi: 10.3724/SP.J.1146.2009.00298
作者姓名:张俊根  姬红兵
作者单位:西安电子科技大学电子工程学院,西安,710071;西安电子科技大学电子工程学院,西安,710071
基金项目:国家自然科学基金(60871074)资助课题
摘    要:该文提出了一种交互式多模型(IMM)迭代扩展卡尔曼粒子滤波机动目标跟踪算法。该算法在多模型中使用了改进的粒子滤波器,通过对迭代扩展卡尔曼滤波(IEKF)的测量更新按照高斯牛顿方法进行修正,减小了非线性滤波带来的线性化误差,然后利用修正的IEKF来产生粒子滤波的重要性密度函数,使其融入最新观测信息。最后将所提算法与交互式多模型粒子滤波(IMMPF)进行了比较,仿真结果表明该算法具有更好的跟踪性能。

关 键 词:机动目标跟踪  交互式多模型  迭代扩展卡尔曼滤波  粒子滤波
收稿时间:2009-03-09
修稿时间:2010-01-29

IMM Iterated Extended Kalman Particle Filter Based Target Tracking
Zhang Jun-gen, Ji Hong-bing. IMM Iterated Extended Kalman Particle Filter Based Target Tracking[J]. Journal of Electronics & Information Technology, 2010, 32(5): 1116-1120. doi: 10.3724/SP.J.1146.2009.00298
Authors:Zhang Jun-gen  Ji Hong-bing
Affiliation:School of Electronic Engineering, Xidian University, Xi’an 710071, China
Abstract:A new algorithm based on Interacting Multiple Model (IMM) iterated extended Kalman particle filter is proposed for maneuvering target tracking, which uses an improved Particle Filter (PF) in multiple model. First, the Iterated Extended Kalman Filter (IEKF) is modified by providing a new measurement update based on Gauss-Newton iteration, thus the linearity error is reduced. Then the modified IEKF is used to generate the importance density function of PF, which integrates the latest observation into system state transition density. Finally, simulation results are presented to demonstrate the improved performance of the proposed method over Interacting Multiple Model Particle Filter (IMMPF).
Keywords:Maneuvering target tracking  Interacting Multiple Model (IMM)  Iterated Extended Kalman Filter (IEKF)  Particle Filter (PF)
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号