首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructure and properties of Ni-Mn-Ga alloys produced by rapid solidification and pulsed electric current sintering
Authors:Outi Sö  derberg,David Brown
Affiliation:a Department of Materials Science and Engineering, Aalto University, School of Chemical Technology, P.O. Box 16200, FI-00076 Aalto, Finland
b Magnequench Technology Centre, 61 Science Park Road, #01-19 Galen, Singapore Science Park II, Singapore 117525, Singapore
Abstract:Ni-Mn-Ga alloys were compacted using pulsed electric current sintering (PECS) at 850-875 °C (50 MPa, 8 min) of flake-like powders made from the rapidly quenched melt-spun ribbons. Two kinds of ribbons were used: one made with a relatively slow wheel speed (6 m/s; average grain size ∼14 μm), and another with a faster wheel speed (23 m/s; average grain size ∼5 μm). Both sets of flake-like powders consisted of a mixture of non-modulated martensite (NM) and seven-layered modulated martensite (7M) structure. The amount of NM was greater in the slower speed material, while the other one exhibited mostly the 7M structure. These crystal structures were inherited by the sintered samples. In the compacts having the NM structure the multi-step martensitic reaction overlapped with the magnetic transition, and the Curie temperatures during heating and cooling differed from each other. In the compacts having mainly 7M structure the Curie point was about 100 °C and the martensitic transition took place in the paramagnetic state, while the intermartensitic one occurred in the region of 60-85 °C. This material demonstrated good magnetic properties and saturation magnetization, at best ∼50 emu/g. Mechanical properties of the compacts were good, and comparable to those of the polycrystalline Ni-Mn-Ga samples in compression.
Keywords:Intermetallics   Rapid-solidification   Sintering   X-ray diffraction   Magnetic measurements   Mechanical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号