首页 | 本学科首页   官方微博 | 高级检索  
     


One-step synthesis of MFe2O4 (M = Fe, Co) hollow spheres by template-free solvothermal method
Authors:Wangchang LiXiaojing Qiao  Qiuyu ZhengTonglai Zhang
Affiliation:a State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
b School of Civil Aviation and Safety Engineering, Shenyang Aerospace University, Shenyang 110136, PR China
Abstract:Monodispersed magnetic MFe2O4 (M = Fe, Co) hollow spheres were synthesized by simple template free solvothermal method in ethylene glycol (EG) solution. The hollow spheres were in the same size with an average diameter of about 360 nm and the shells of these spheres were about 80 nm, consisted of closely packed nanocrystallines due to Ostwald ripening. EG plays the key role in the synthesis of hollow spheres in contrast with octahedral crystals synthesized in aqueous solution. The products synthesized in aqueous solution were calcined at 800 °C and 1000 °C. The amount of spinel ferrite products increased monotonically with the increase of temperature and appeared as a single phase at 1000 °C. The saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) for Fe3O4 hollow spheres was 74.47 emu/g, 2.59 emu/g and 32.503 Oe respectively whereas the reading of the same indicators for CoFe2O4 hollow spheres was 69.07 emu/g, 14.46 emu/g and 242.79 Oe, respectively. The magnetic variation between Fe3O4 and CoFe2O4 hollow spheres was caused by the radius difference of Fe2+ (3d6) and Co2+ (3d7) ions and it was also relevant with nanocrystal sizes of the spin disorder of crystal surface.
Keywords:Solvothermal  Magnetism  Hollow spheres  Ferrites
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号