首页 | 本学科首页   官方微博 | 高级检索  
     


Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype
Authors:FJ McDonald  B Yang  RF Hrstka  HA Drummond  DE Tarr  PB McCray  JB Stokes  MJ Welsh  RA Williamson
Affiliation:Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
Abstract:The epithelial Na+ channel (ENaC) is composed of three homologous subunits: alpha, beta and gamma. We used gene targeting to disrupt the beta subunit gene of ENaC in mice. The betaENaC-deficient mice showed normal prenatal development but died within 2 days after birth, most likely of hyperkalemia. In the -/- mice, we found an increased urine Na+ concentration despite hyponatremia and a decreased urine K+ concentration despite hyperkalemia. Moreover, serum aldosterone levels were increased. In contrast to alphaENaC-deficient mice, which die because of defective lung liquid clearance, neonatal betaENaC deficient mice did not die of respiratory failure and showed only a small increase in wet lung weight that had little, if any, adverse physiologic consequence. The results indicate that, in vivo, the beta subunit is required for ENaC function in the renal collecting duct, but, in contrast to the alpha subunit, the beta subunit is not required for the transition from a liquid-filled to an air-filled lung. The phenotype of the betaENaC-deficient mice is similar to that of humans with pseudohypoaldosteronism type 1 and may provide a useful model to study the pathogenesis and treatment of this disorder.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号