首页 | 本学科首页   官方微博 | 高级检索  
     

基于多特征自适应融合的目标跟踪算法
引用本文:张静,刘晓伟,刘安安,苏育挺,张哲. 基于多特征自适应融合的目标跟踪算法[J]. 电子测量技术, 2013, 0(11): 30-33
作者姓名:张静  刘晓伟  刘安安  苏育挺  张哲
作者单位:天津大学电子信息工程学院,天津300072
摘    要:针对目标跟踪中部分遮挡及漂移问题,提出了一种基于多特征自适应融合和在线学习的目标跟踪算法。首先针对原始特征提取的相对简易性,提出了改进的特征提取方法,提高了特征的表达能力和判别能力,然后将多种特征自适应融合,最后进行在线学习。实验采用了具有挑战性的公共测试数据集PETS 2012,并用MOTP评测了跟踪性能。实验结果验证了提出算法的有效性,大大提高了复杂场景下的跟踪鲁棒性,有效地解决了部分遮挡和跟踪漂移问题。

关 键 词:多特征  自适应融合  在线学习

Object tracking algorithm based on adaptive fusion of multi-feature
Zhang Jing,Liu Xiaowei,Liu Anan,Su Yuting,Zhang Zhe. Object tracking algorithm based on adaptive fusion of multi-feature[J]. Electronic Measurement Technology, 2013, 0(11): 30-33
Authors:Zhang Jing  Liu Xiaowei  Liu Anan  Su Yuting  Zhang Zhe
Affiliation:1.School of Electronic & Information Engineering,Tianjin University,Tianjin 300072,China;)
Abstract:In view of partly occlusion and drifting problem in object tracking,we introduce an object tracking algorithm based on adaptive fusion of multi-feature and online learning.First,to improve the expression and discrimination of feature,we employ an improved feature extraction way.Then,we propose a new method,which uses adaptive fusion of multiple features with online learning of the detector and the object-specific recognizer.Finally,we employ challenging public testing dataset-PETS 2012 and use MOTP evaluate the performance of our method.Experiment results verify the effectiveness of our algorithm,greatly improving the tracking robustness in various environments.
Keywords:multi-feature  adaptive fusion  online learning
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号