首页 | 本学科首页   官方微博 | 高级检索  
     

一种多目标人工蜂群算法
引用本文:葛宇,梁 静. 一种多目标人工蜂群算法[J]. 计算机科学, 2015, 42(9): 257-262, 281
作者姓名:葛宇  梁 静
作者单位:四川师范大学基础教学学院 成都610068,成都工业学院网络中心 成都610031
基金项目:本文受四川省教育厅项目:人工蜂群算法及其在多目标优化问题中的应用研究(12ZB112)资助
摘    要:为将标准人工蜂群算法有效应用到多目标优化问题中,设计了一种多目标人工蜂群算法。其进化策略在利用精英解引导搜索的同时结合正弦函数搜索操作来平衡算法对解空间的开发与开采行为。另外,算法借助了外部集合来记录与维护种群进化过程中产生的Pareto最优解。理论分析表明:针对多目标优化问题,本算法能收敛到理论最优解集合。对典型多目标测试问题的仿真实验结果表明:本算法能有效逼近理论最优,具有较好的收敛性和均匀性,并且与同类型算法相比,本算法具有良好的求解性能。

关 键 词:多目标人工蜂群算法  精英引导搜索  正弦函数搜索  进化策略  外部集合

Multi-objective Artificial Bee Colony Algorithm
GE Yu and LIANG Jing. Multi-objective Artificial Bee Colony Algorithm[J]. Computer Science, 2015, 42(9): 257-262, 281
Authors:GE Yu and LIANG Jing
Affiliation:College of Fundamental Education,Sichuan Normal University,Chengdu 610068,China and Network Center,Chengdu Technological University,Chengdu 610031,China
Abstract:This paper designed a multi-objective artificial bee colony algorithm in order to make it effectively apply to multi-objective optimization problem.The evolutionary strategy uses elite solutions to guide search,at the same time combines sine function searching operation to balance exploration and exploitation of solution space.In addition,the algorithm records and maintains the Pareto optimal solutions of evolutionary process with the aid of the external archive .The theoretical analysis shows that the proposed algorithm can converge to the theory optimal solution archive of multi-objective problem.In addition,simulations result indicate that the proposed algorithm can effectively close to theory optimal solution archive,has good convergence and uniformity in solving typical multi-objective optimization problem,and compared with the same type of algorithms in references,it has good performance.
Keywords:Multi-objective artificial bee colony algorithm  Elite guided searching  Sine function searching  Evolutionary strategy  External archive
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机科学》浏览原始摘要信息
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号