首页 | 本学科首页   官方微博 | 高级检索  
     


A finite element first-order equation formulation for the small-disturbance transonic flow problem
Authors:LCarter Wellford  MM Hafez
Affiliation:Department of Civil Engineering, University of Southern California, Los Angeles, California USA;Flow Research Inc., Kent, Washington USA
Abstract:The nonlinear, mixed elliptic hyperbolic equation describing a steady transonic flow is considered. The original equation is replaced by a system of first-order equations that are hyperbolic in time and defined in terms of velocity components. Parabolic regularization terms are added to capture shock wave solutions and to damp iterative solution algorithms. A finite element Galerkin method in space and a Crank-Nicolson finite difference method in iterative time are used to reduce the problem to the solution of a system of algebraic equations. Stability and convergence characteristics of the iterative method are discussed. The numerical implementation of the method is explained, and numerical results are presented.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号