首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical resistivity of transition metal ion doped Mullite
Authors:S P Chaudhuri  S K Patra  A K Chakraborty
Affiliation:

a Special Ceramics Section, Central Glass and Ceramic Research Institute, Calcutta-700 032, India

b Instrumentation Section, Central Glass and Ceramic Research Institute, Calcutta-700 032, India

Abstract:The electrical resistivity of pure mullite (3Al2O3.2SiO2) varies from 1013 ohm-cm at room temperature (r.t.) to 104 ohm-cm at 1400 °C. It was observed that by doping mullite with the 3d-type transition metal ions, e.g. Mn, Fe, Cr and Ti, the resistivity of mullite could be reduced to 1011 ohm-cm, i.e. 1/100 that at r.t. and 1/5 that at 1400 °C. The resistivity of doped and undoped mullite decreased by 6–5 orders at about 500–600 °C but 4–3 orders between this temperature and 1400 °C. The 3d orbital electrons, the oxidation states and the concentration of the transition metal ions as well as the sites of mullite lattice occupied by the ions were found responsible for lowering of resistivity of mullite. Evidence of the presence of Mn2+, Mn3+, Fe3+, Cr3+ and Ti4+ ions in mullite had been obtained which entered the octahedral site. The Ti4+ ion which substituted Al3+ ion in the octahedral site of mullite structure appeared to be the most efficient one to reduce the resistivity. This has been confirmed by the results of activation energy of resistivity/band gap energy, Eg which was the lowest for mullite doped with 1·0 wt% Ti4+ ion. At 1·0 wt% concentration level, these ions lowered the resistivity of mullite to minimum.
Keywords:resistivity  electrical conductivity  mullite  transition metal oxides  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号