首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙PSO-BP神经网络的冷链物流服务商选择研究
引用本文:王玖河,刘欢,高辉. 基于粗糙PSO-BP神经网络的冷链物流服务商选择研究[J]. 工业工程, 2021, 24(2): 10-18. DOI: 10.3969/j.issn.1007-7375.2021.02.002
作者姓名:王玖河  刘欢  高辉
作者单位:燕山大学 经济管理学院,河北 秦皇岛 066004;燕山大学 京津冀协同发展管理创新研究中心,河北 秦皇岛 066004;燕山大学 经济管理学院,河北 秦皇岛 066004
基金项目:河北省社会科学基金资助项目(HB18GL075);河北省自然科学基金资助项目(G2015203378);秦皇岛市软科学研究计划资助项目(201301B044);河北省高等学校科学技术研究重点资助项目(ZD2015042)
摘    要:为帮助冷链食品生产企业快速选择最佳冷链物流服务商,在传统BP神经网络基础上融合粗糙集和粒子群算法,构建了粗糙PSO-BP神经网络模型。该模型利用粗糙集剔除原始数据中的冗余信息,使输入指标更加精简;采用粒子群算法代替梯度下降法对神经网络权重进行训练,使输出结果不易陷入局部极小值,增强网络泛化能力。通过算例验证该模型的有效性和可行性。结果表明,该模型在提高运算速度的同时,预测误差为BP神经网络模型的40.94%,预测结果更加准确可靠,为冷链食品生产企业快速选择最佳冷链物流服务商提供一种新的方法指导。

关 键 词:BP神经网络  冷链物流服务商选择  粗糙集  粒子群算法
收稿时间:2019-10-09

A Study of Cold Chain Logistics Service Provider Selection Based on Rough PSO-BP Neural Network
WANG Jiuhe,LIU Huan,GAO Hui. A Study of Cold Chain Logistics Service Provider Selection Based on Rough PSO-BP Neural Network[J]. Industrial Engineering Journal, 2021, 24(2): 10-18. DOI: 10.3969/j.issn.1007-7375.2021.02.002
Authors:WANG Jiuhe  LIU Huan  GAO Hui
Affiliation:1. School of Economics and Management;2. Management Innovation Research Center of Beijing-Tianjin-Hebei Coordinated Development, Yanshan University, Qinhuangdao 066004, China
Abstract:In order to help cold chain food production enterprises to select the best cold chain logistics service providers quickly, a rough PSO-BP neural network model was constructed by integrating rough set and particle swarm algorithm on the basis of traditional BP neural network. The model uses rough set to eliminate the redundant information in the original data and make the input index more compact. Particle swarm optimization is used instead of gradient descent to train the weights of the neural network, so that the output results are not easily trapped in local minimal and the generalization ability of the network is enhanced. Finally, an example is given to verify the validity and feasibility of the model. The results show that while improving the operation speed, the prediction error of the model is 40.94% of the BP neural network model, and the prediction result is more accurate and reliable, which provides a new method for the cold chain food production enterprises to quickly select the best cold chain logistics service provider.
Keywords:BP neural network  choice of cold chain logistics provider  rough set  particle swarm optimization  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《工业工程》浏览原始摘要信息
点击此处可从《工业工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号