首页 | 本学科首页   官方微博 | 高级检索  
     

改进多种群遗传算法的AutoStore系统多AGV调度优化
引用本文:王晓军,王博,晋民杰,杨春霞,白新利. 改进多种群遗传算法的AutoStore系统多AGV调度优化[J]. 工业工程, 2021, 24(4): 112. DOI: 10.3969/j.issn.1007-7375.2021.04.013
作者姓名:王晓军  王博  晋民杰  杨春霞  白新利
作者单位:太原科技大学 交通与物流学院,山西 太原 030024;山西海德拉太矿国际采矿刀具设备有限公司,山西 太原 030024
基金项目:山西省重点研发计划资助项目(201903D121176);太原科技大学教学改革创新项目资助(202037)
摘    要:新兴紧致密集型仓储系统AutoStore存在出、入库单独作业及联合作业并存的情况,使用传统单一作业模式下所得AGV调度方案易导致资源浪费或效率低等问题。在分析多作业模式工作流程基础上,建立多AGV任务分配模型,优化目标为系统总作业时间最短。对传统多种群遗传算法进行改进。首先,为获得具有多样性的初始解,给出适用于实数编码的初始解判断式;其次,为提高搜索效率,给出交叉、变异概率计算式,使得遗传操作能随着进化过程和适应度值变化而不同。算例分析验证所给算法的可行性与有效性,能为系统提供更优的AGV调度方案。

关 键 词:AutoStore系统  AGV调度  多种群遗传算法  联合作业
收稿时间:2020-07-26

Multi AGV Scheduling Optimization of AutoStore System Based on Improved Multi Population Genetic Algorithm
WANG Xiaojun,WANG Bo,JIN Minjie,YANG Chunxia,BAI Xinli. Multi AGV Scheduling Optimization of AutoStore System Based on Improved Multi Population Genetic Algorithm[J]. Industrial Engineering Journal, 2021, 24(4): 112. DOI: 10.3969/j.issn.1007-7375.2021.04.013
Authors:WANG Xiaojun  WANG Bo  JIN Minjie  YANG Chunxia  BAI Xinli
Affiliation:1. Department of Transportation and Logistics, Taiyuan University of Science and Technology, Taiyuan 030024, China;2. Shanxi Hydra TMMG Mining Tools & Equipment International Ltd., Taiyuan 030024, China
Abstract:The emerging compact-intensive storage system AutoStore has the coexistence of separate operations and joint operations for outbound and inbound operations. If the AGV scheduling scheme obtained under the traditional single operation mode is used, it is easy to cause resource waste or low efficiency. Therefore, based on the analysis of multi-operation mode process, the AGV task allocation model with the shortest total operation time of various operation modes is established, and the objective function is the shortest total operation time of the system. The traditional multi-population genetic algorithm is improved. Firstly, in order to make the distribution of the initial solution uniform, the distribution of the generated initial solution is judged. Secondly, the rule that the cross-mutation probability changes with the fitness value is given to enhance the search efficiency of the algorithm. The analysis of the example verifies the feasibility and effectiveness of the improved algorithm, which can provide a better system for the system AGV scheduling scheme.
Keywords:AutoStore system  AGV scheduling  multi-population genetic algorithm  joint job  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《工业工程》浏览原始摘要信息
点击此处可从《工业工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号