首页 | 本学科首页   官方微博 | 高级检索  
     


CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion
Authors:P Friedl  F Entschladen  C Conrad  B Niggemann  KS Z?nker
Affiliation:Institute of Immunology, University of Witten/Herdecke, Witten, Germany. Peter.fr@mail.uni-wuerzburg.de
Abstract:Cell migration may depend on integrin-mediated adhesion to and deadhesion from extracellular matrix ligands. This concept, however, has not yet been confirmed for T lymphocytes migrating in three-dimensional extracellular matrices. We investigated receptor involvement in T cell migration combining a three-dimensional collagen matrix model with time-lapse videomicroscopy, computer-assisted cell tracking and confocal microscopy. In collagen lattices, the migration of CD4+ T cells (1) involved interactions with collagen fibers at the leading edge and uropod likewise, (2) occurred independently of the co-clustering of beta1, beta2, or beta3 integrins with F-actin, focal adhesion kinase, and phosphotyrosine at interactions with collagen fibers, (3) was counteracted by high-affinity beta1 integrin binding induced by antibody TS2/16; however, (4) the migration could not be blocked by a combination of adhesion-perturbing anti-beta1, -beta2, -beta3, and alpha v integrin antibodies. Integrin blocking neither affected cell polarization, interaction with fibers, beta1 integrin distribution, migration velocity, path structure, nor the number of locomoting cells in spontaneously migrating or concanavalin A-activated cells. Hence, T lymphocytes migrating in three-dimensional collagen matrices may utilize highly transient interactions with collagen fibers of low adhesivity, thereby differing from focal adhesion-dependent migration strategies employed by other cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号