首页 | 本学科首页   官方微博 | 高级检索  
     


Repair of Slab–Column Connections Using Epoxy and Carbon Fiber Reinforced Polymer
Authors:Ian Nicol Robertson  Gaur Johnson
Affiliation:1Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Hawaii, 2540 Dole St., Holmes Hall 383, Honolulu, HI 96822.
2Doctoral Candidate, Dept. of Civil and Environmental Engineering, Univ. of Hawaii, 2540 Dole St., Holmes Hall 383, Honolulu, HI 96822.
Abstract:Repair, strengthening, and retrofit of reinforced and prestressed concrete members have become increasingly important issues as the World’s infrastructure deteriorates with time. Buildings and bridges are often in need of repair or strengthening to accommodate larger live loads as traffic and building occupancies change. In addition, inadequate design and detailing for seismic and other severe natural events has resulted in considerable structural damage and loss of life, particularly in reinforced concrete buildings. Numerous buildings and bridges suffer damage during such events and need to be repaired. The use of carbon fiber reinforced polymer (CFRP) composite fabric bonded to the surface of concrete members is comparatively simple, quick and virtually unnoticeable after installation. The use of composites has become routine for increasing both the flexural and shear capacities of reinforced and prestressed concrete beams. Earthquake retrofit of bridge and building structures has relied increasingly on composite wrapping of columns, beams and joints to provide confinement and increase ductility. This paper presents the results of cyclic testing of three large-scale reinforced concrete slab–column connections. Each of the specimens was a half-scale model of an interior slab–column connection common to flat-slab buildings. The specimens were reinforced according to ACI-318 code requirements and included slab shear reinforcement. While supporting a slab gravity load equivalent to dead load plus 30% of the live load, the specimens were subjected to an increasing cyclic lateral loading protocol up to 5% lateral drift. The specimens were subjected to the same loading protocol after they were repaired with epoxy crack sealers and CFRP sheet on the surfaces of the slab. Repair with epoxy and CFRP on the top surface of the slab was able to restore both initial stiffness and ultimate strength of the original specimen.
Keywords:Rehabilitation  Concrete slabs  Epoxy compounds  Seismic response  Punching  Fiber reinforced polymers  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号