首页 | 本学科首页   官方微博 | 高级检索  
     

一种半监督学习的代码自动生成性能评估方法
引用本文:张晓江,姜瑛. 一种半监督学习的代码自动生成性能评估方法[J]. 小型微型计算机系统, 2021, 0(3): 647-654
作者姓名:张晓江  姜瑛
作者单位:昆明理工大学云南计算机技术应用重点实验室;昆明理工大学信息工程与自动化学院
基金项目:国家重点研发计划项目(2018YFB1003904)资助;国家自然科学基金项目(61462049,61063006,60703116)资助;云南省应用基础研究计划重点项目(2017FA033)资助;云南省教育厅科学研究基金项目(2020Y0087)资助。
摘    要:为了提高软件开发的质量和效率,代码自动生成是当前的研究热点,代码自动生成的性能是其中的重要问题.现有代码自动生成的性能分析方法较简单,难以评估代码自动生成过程中程序员与代码自动生成工具各自的特征.本文综合考虑了代码自动生成过程中程序员与代码自动生成工具的作用,提出了一种基于半监督学习的代码自动生成性能评估方法,通过抽取...

关 键 词:代码自动生成  性能评估  半监督学习  性能类别  程序员  代码自动生成工具

Performance Evaluation Method of Code Generation Based on Semi-supervised Learning
ZHANG Xiao-jiang,JIANG Ying. Performance Evaluation Method of Code Generation Based on Semi-supervised Learning[J]. Mini-micro Systems, 2021, 0(3): 647-654
Authors:ZHANG Xiao-jiang  JIANG Ying
Affiliation:(Yunnan Key Lab of Computer Technology Application,Kunming 650500,China;Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
Abstract:In order to improve the quality and efficiency of software development,automatic code generation is the current research hotspot.The performance of automatic code generation is an important issue.The existing performance analysis methods of automatic code generation are relatively simple,so it is difficult to evaluate the characteristics of programmers and automatic code generation tools in the process of automatic code generation.In this paper,the function of the programmer and the automatic code generation tool in the process of automatic code generation is considered.A method of evaluating the performance of automatic code generation based on semi-supervised learning is proposed.By extracting the important characteristics from the behavior of the programmer and the automatic code generation tool,the performance category of automatic code generation is divided.Then the performance evaluation model of automatic code generation process based on Deep Neural Networks is established.Finally,the impact on performance produced by behavior both programmers and automatic code generation tools is calculated.Experimental results show that this method can effectively analyze the impact on the performance from programmer behavior and automatic code generation tool behavior during the process of code generation.
Keywords:automatic code generation  performance evaluation  semi-supervised learning  performance category  programmer  automatic code generation tool
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号