首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a thermodynamically consistent kinetic model for reactions in the solid oxide fuel cell
Authors:P. Vijay  A.K. Samantaray  A. Mukherjee
Affiliation:1. Pressure Sensitive Adhesive 1 Team, Aekyung Chemical Co., Ltd, Daejeon 34108, Republic of Korea;2. Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea;1. Université de Sousse, LabEM-LR11ES34 Laboratoire Energie-Matériaux groupe de recherche nano-matériaux pour les télécommunications et capteurs, Institut Supérieure d’Informatique et des Techniques de Communication, 4011, Hammam Sousse, Tunisia;2. Université de Tunis El Manar, LR : LAB MA03 Matériaux, Organisation et Propriétés, Faculté des Sciences de Tunis, 2092, Tunis;3. Université de Gabès, Laboratoire de Physique des Matériaux et des Nanomatériaux Appliquée à l?Environnement, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès, Tunisia;1. Department of Mechanical Engineering, University of Texas, El Paso, TX 79968, USA;2. Department of Electrical Engineering, University of California, Santa Barbara, CA 93106-512, USA;1. School of Physics and Materials Science, Radiation Detection Materials & Devices Lab, Anhui University, Hefei 230039, China;2. School of Sciences, Anhui University of Science and Technology, Huainan 232001, China;3. Department of Physics, Shaoxing University, Shaoxing 312000, China;4. Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061, China;5. Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanostructure, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract:The parameter estimation using the traditional kinetic modeling of complex reaction systems will give incorrect results if the reaction mechanism contains a loop. In this work, a thermodynamically consistent kinetic model of the anodic electrochemical hydrogen oxidation reaction mechanism of a solid oxide fuel cell (SOFC) is formulated. An iterative algorithm for estimating the reaction rate constants using the thermodynamically consistent model formulation is developed. The kinetic parameters estimated using the proposed method gives a better fit to the experimental data. Using the concept of ‘Degree of rate control’ it is found that the surface reactions may have a greater role in deciding the overall rate. The proposed iterative parameter estimation algorithm developed in this work can also be adapted to other complex chemical and biochemical reaction networks for which the reaction rate constants need to be estimated using the experimental data.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号