首页 | 本学科首页   官方微博 | 高级检索  
     

基于Apriori和GP-XGBoost的特高拱坝变形缺失数据填补方法
作者姓名:吴诚姝  陈波  刘庭赫
作者单位:(1.河海大学 水利水电学院, 江苏 南京 210098; 2.河海大学 水文水资源与水利工程科学国家重点实验室, 江苏 南京 210098; 3.中水东北勘测设计研究有限责任公司, 吉林 长春 130021)
基金项目:国家自然科学基金项目(52079049、51739003)
摘    要:变形监测数据作为特高拱坝服役性态最直观的表征,蕴藏着丰富的时空信息和演变规律,对工程长治久安意义重大。然而,多源多维的变形监测数据受仪器本身及外界因素影响,往往存在数据缺失的现象,会对接下来的数据分析工作造成干扰。针对大坝变形监测序列中的缺失数据,基于Apriori关联规则算法挖掘测点变形在空间维度上的关联性,得到目标测点的强关联测点,随后以强关联测点的变形监测数据作为输入样本,利用贝叶斯优化的XGBoost回归模型填补了目标测点的空缺变形监测序列。结合锦屏一级特高拱坝工程实例表明,该填补方法实现了变形监测空缺信息的高效、精准填补,可用于类似大坝工程的变形缺失数据填补。

关 键 词:特高拱坝   变形监测   缺失数据填补   Apriori关联规则   XGBoost回归
点击此处可从《水资源与水工程学报》浏览原始摘要信息
点击此处可从《水资源与水工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号