首页 | 本学科首页   官方微博 | 高级检索  
     


Accurate recovery-based upper error bounds for the extended finite element framework
Authors:J.J. Ródenas  O.A. González-Estrada  P. Díez  F.J. Fuenmayor
Affiliation:1. Prototype Engineering Inc., 57 Westland Avenue, Winchester, MA 01890, USA;2. Prototype Engineering, Inc., 36E Seven Springs Lane, Burlington, MA 01803, USA
Abstract:This paper introduces a recovery-type error estimator yielding upper bounds of the error in energy norm for linear elastic fracture mechanics problems solved using the extended finite element method (XFEM). The paper can be considered as an extension and enhancement of a previous work in which the upper bounds of the error were developed in a FEM framework. The upper bound property requires the recovered solution to be equilibrated and continuous. The proposed technique consists of using a recovery technique, especially adapted to the XFEM framework that yields equilibrium at a local level (patch by patch). Then a postprocess based on the partition of unity concept is used to obtain continuity. The result is a very accurate but only nearly-statically admissible recovered stress field, with small equilibrium defaults introduced by the postprocess. Sharp upper bounds are obtained using a new methodology accounting for the equilibrium defaults, as demonstrated by the numerical tests.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号