首页 | 本学科首页   官方微博 | 高级检索  
     

一种面向自动驾驶推理任务的工作流调度策略
引用本文:林凯,卢宇,陈星,林兵. 一种面向自动驾驶推理任务的工作流调度策略[J]. 小型微型计算机系统, 2021, 0(3): 632-639
作者姓名:林凯  卢宇  陈星  林兵
作者单位:福建师范大学物理与能源学院;福州大学数学与计算机科学学院
基金项目:国家重点研发计划项目(2018YFB1004800)资助;国家自然科学基金项目(61972165,61872184,61727802,41801324)资助;福建省自然科学基金项目(2019J01286,2019J01244)资助;福建省教育厅中青年教师教育科研项目(JT180098)资助;福建省科技厅引导性项目(2017H0011)资助。
摘    要:目前自动驾驶推理任务调度中要解决的关键问题是如何在不同的时间窗内,让实时推理任务满足可容忍时间约束的前提下,在相应的处理设备上被调度执行完成.在不同时间窗内,依据边缘节点的数量变化以及推理任务的不同,设计了一种边缘环境下基于强化学习算法的工作流调度策略.首先,利用推理任务工作流调度算法计算任务的完成时间;其次,采用基于...

关 键 词:自动驾驶  工作流调度  强化学习  边缘计算

Workflow Scheduling Strategy for Reasoning Task of Autonomous Driving
LIN Kai,LU Yu,CHEN Xing,LIN Bing. Workflow Scheduling Strategy for Reasoning Task of Autonomous Driving[J]. Mini-micro Systems, 2021, 0(3): 632-639
Authors:LIN Kai  LU Yu  CHEN Xing  LIN Bing
Affiliation:(College of Physics and Energy,Fujian Normal University,Fuzhou 350117,China;College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350116,China)
Abstract:At present,the key problem to be solved in task scheduling of autonomous driving reasoning is how to schedule the real-time reasoning task on the corresponding processing equipment satisfying the constraint of tolerance time in different time-slots.In different time-slots a workflow scheduling strategy based on reinforcement learning algorithm is designed according to the number of edge nodes and different reasoning tasks.First of all,the completion time of the task is calculated by the workflow scheduling algorithm of reasoning task.Secondly,Q-learning based on simulated annealing(SA-QL) is used to optimize the completion time of reasoning task.Finally, the performance differences between SA-RL and PSO are reflected from the four aspects of feasibility,convergence,effectiveness and exploration.The experimental results show that SA-RL and PSO are feasible and effective.TD(0) algorithms show better performance of exploration,TD(λ) algorithms show that of convergence.
Keywords:autonomous driving  workflow scheduling  reinforcement learning  edge computing
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号