首页 | 本学科首页   官方微博 | 高级检索  
     


Free nitrous acid inhibition on the aerobic metabolism of poly-phosphate accumulating organisms
Authors:Maite Pijuan  Liu Ye  Zhiguo Yuan
Affiliation:1. Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, QLD 4072, Australia;2. Griffith School of Engineering, Griffith University, QLD, Australia;3. Centre for Clean Environment and Energy, Environmental Futures Research Institute, Griffith University, QLD, Australia;4. Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;5. School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
Abstract:In full-scale wastewater treatment systems, phosphorus removal typically occurs together with nitrogen removal. Nitrite, an intermediate of both the nitrification and denitrification processes, can accumulate in the reactor. The inhibitory effect of nitrite/free nitrous acid (FNA) on the aerobic metabolism of poly-phosphate accumulating organisms (PAOs) is investigated. A culture highly enriched (90 ± 5%) in Candidatus “Accummulibacter phosphatis”, a well-known PAO, was used to perform a series of batch experiments at various nitrite and pH levels. FNA was found to inhibit all key aerobic metabolic processes performed by PAOs, namely PHA oxidation, phosphate uptake, glycogen replenishment and growth. The inhibitory effect on the anabolic processes (growth, phosphate uptake and glycogen production) was much stronger than that on the catabolic processes (PHA oxidation). 50% inhibition on all anabolic processes occurred at FNA concentrations of approximately 0.5 × 10?3 mg HNO2–N/L (equivalent to 2.0 mg NO2?–N/L at pH 7.0), while full inhibition occurred at FNA concentrations of approximately 6.0 × 10?3 mg HNO2–N. These concentrations could be found in full-scale wastewater treatment systems that achieve nitrogen removal via the nitrite pathway. In comparison, PHA oxidation remained at 40–50% of the highest rate at FNA concentrations in the range 2.0 × 10?3–10.0 × 10?3 mg HNO2–N/L. Interestingly, PAOs were able to reduce nitrite under aerobic conditions (DO ≈ 3 mg/L), with the rate increasing substantially with the FNA concentration. The inhibition on phosphate uptake was found to be reversible.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号