Abstract: | Recent advancement in wireless sensor network has contributed greatly to the emerging of low‐cost, low‐powered sensor nodes. Even though deployment of large‐scale wireless sensor network became easier, as the power consumption rate of individual sensor nodes is restricted to prolong the battery lifetime of sensor nodes, hence the heavy computation capability is also restricted. Localization of an individual sensor node in a large‐scale geographic area is an integral part of collecting information captured by the sensor network. The Global Positioning System (GPS) is one of the most popular methods of localization of mobile terminals; however, the use of this technology in wireless sensor node greatly depletes battery life. Therefore, a novel idea is coined to use few GPS‐enabled sensor nodes, also known as anchor nodes, in the wireless sensor network in a well‐distributed manner. Distances between anchor nodes are measured, and various localization techniques utilize this information. A novel localization scheme Intersecting Chord‐Based Geometric Localization Scheme (ICBGLS) is proposed here, which loosely follows geometric constraint‐based algorithm. Simulation of the proposed scheme is carried out for various communication ranges, beacon broadcasting interval, and anchor node traversal techniques using Omnet++ framework along with INET framework. The performance of the proposed algorithm (ICBGLS), Ssu scheme, Xiao scheme, and Geometric Constraint‐Based (GCB) scheme is evaluated, and the result shows the fact that the proposed algorithm outperforms the existing localization algorithms in terms of average localization error. The proposed algorithm is executed in a real‐time indoor environment using Arduino Uno R3 and shows a significant reduction in average localization time than GCB scheme and similar to that of the SSU scheme and Xiao scheme. |