首页 | 本学科首页   官方微博 | 高级检索  
     

基于标签传播的拓扑势社区检测算法
引用本文:费蓉,李莎莎,胡博,唐瑜,方金正. 基于标签传播的拓扑势社区检测算法[J]. 计算机系统应用, 2020, 29(10): 148-157
作者姓名:费蓉  李莎莎  胡博  唐瑜  方金正
作者单位:西安理工大学计算机科学与工程学院,西安710048;北京华电优控科技有限公司,北京100193
基金项目:国家自然科学基金(61773313);陕西省重点研发计划(2017ZDXM-GY-098);陕西省自然科学基础研究计划(2020JM-709)
摘    要:基于拓扑势的社区检测通过节点的链接信息构造拓扑势域,在拓扑势域内进行社区划分.但实际划分过程存在大量孤立性社区.带节点属性信息的社区检测问题作为社区的重要组成,已成为社区检测的主要研究方向.本文提出了一种结合标签传播的拓扑势社区检测算法(TPCDLP).首先,结合标签传播思想将属性信息转换为节点间的链接权值.其次,把链接权值加入到拓扑势中构造拓扑势域.再利用核心节点进行子群社区的划分.最后,利用子群社区间核心节点的距离进行社区划分.在3个含标签属性的数据集上,与6种算法对比,该算法在改进的模块度QoEv、信息熵Entropy、社区重叠度Overlap和综合指标F上表现更优.在3个真实社区上应用了该算法,并与3种算法对比,实验结果显示该算法在标准化互信息指标N MI上表现良好,能够有效应用于实际问题.

关 键 词:拓扑势  标签传播  社区检测  数据场
收稿时间:2020-03-17
修稿时间:2020-04-14

Topological Potential Community Discovery Algorithm Based on Label Propagation
FEI Rong,LI Sha-Sh,HU Bo,TANG Yu,FANG Jin-Zheng. Topological Potential Community Discovery Algorithm Based on Label Propagation[J]. Computer Systems& Applications, 2020, 29(10): 148-157
Authors:FEI Rong  LI Sha-Sh  HU Bo  TANG Yu  FANG Jin-Zheng
Abstract:Community detection based on the topological potential constructs the topological potential field by the link information of nodes, in which the community can be partitioned. However, there are a large number of isolated communities in the actual division process. The problem of community discovery with node attribute information, as an important part of the community, has become the main research direction of community discovery. This paper proposes a topological potential community discovery algorithm combined with label propagation (TPCDLP). First, combining the thought of label propagation, the attribute information is converted into the link weights between nodes. Second, the link weights are added to the topological potential to construct the topological potential field. Then, the subgroup communities are partitioned by the core node. Finally, the communities are partitioned by using the distance of the core nodes between the subgroup communities. Compared with six algorithms on three datasets with label attributes, the TPCDLP performs better on the improved modular degree $Q_{ov}^E$, information entropy $Entropy$, community overlap degree $Overlap$ and comprehensive index $F$.
Keywords:topological potential  label propagation  community discovery  data field
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号