摘 要: | 针对目前工业上金属轴零件在加工的过程中可能由于加工失误、本身材质等原因产生不同缺陷,而传统的检测方法检测精度和泛化能力有限的现状,课题组提出了基于深度学习的不规则特征识别技术,来提升对金属轴表面缺陷的检测效率。课题组设计了金属轴表面缺陷图像预处理方法,提升采集的缺陷图像的质量;对传统深度学习Faster R-CNN进行改进,设计了模型的特征提取网络、RPN网络、分类网络以及模型参数,提升模型的检测性能。实验结果表明本技术能有效提升工业流水线对金属轴缺陷的检测效率和精度,可同时检测多种不同种类的缺陷。课题组的研究成果具备良好的泛化能力。
|