首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering molecular communications integrated with carbon nanotubes in neural sensor nanonetworks
Authors:Saied M Abd El&#x;atty  Konstantinos A Lizos  ZM Gharsseldien  Amr Tolba  Zafer AL Makhadmeh
Abstract:There have been recent advances in the engineering of molecular communication (MC)‐based networks for nanomedical applications. However, the integration of MC with biomaterials such as carbon nanotubes (CNTs) presents various critical research challenges. In this study, the authors envisaged integrating MC‐based nanonetwork with CNTs to optimise nanonetwork performance. In neural networks, a chronic reduction in the concentration of the neurotransmitter acetylcholine (ACh) eventually leads to the development of neurodegenerative diseases; therefore, they used CNTs as a molecular switch to optimise ACh conductivity supported by artificial MC. Furthermore, MC enables communication between transmitter neurons and receiver neurons for fine‐tuning the ACh release rate according to the feedback concentration of ACh. Subsequently, they proposed a min/max feedback scheme to fine‐tune the expected throughput and ACh transmission efficiency. For demonstration purposes, they deduced analytical forms for the proposed schemes in terms of throughput, incurred traffic rates, and average packet delay.Inspec keywords: carbon nanotubes, cellular biophysics, diseases, feedback, nanomedicine, nanosensors, neural nets, neurophysiologyOther keywords: carbon nanotubes, neural sensor nanonetworks, nanomedical applications, biomaterials, molecular communication‐based nanonetwork, neural networks, neurotransmitter acetylcholine, neurodegenerative diseases, transmitter neurons, receiver neurons
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号