首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis,characterisation and anti‐tumour activity of biopolymer based platinum nanoparticles and 5‐fluorouracil loaded platinum nanoparticles
Authors:Deepika Godugu  Sashidhar Rao Beedu
Affiliation:1. Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007 Telangana, India
Abstract:A facile and green synthesis of platinum nanoparticles gum kondagogu platinum nanoparticles (GKPtNP)] using biopolymer‐ gum kondagogu was developed. The formation of GKPtNP was confirmed by ultraviolet (UV)–visible spectroscopy, scanning electron microscopy–energy dispersive X‐ray spectroscopy, transmission electron microscopy, X‐ray diffraction, Zeta potential, Fourier transform infrared, inductively coupled plasma mass spectroscopy. The formed GKPtNP are well dispersed, homogeneous with a size of 2–4 ± 0.50 nm, having a negative zeta potential (−46.1 mV) indicating good stability. 5‐Fluorouracil (5FU) was loaded onto the synthesised GKPtNP, which leads to the development of a new combination of nanomedicine (5FU–GKPtNP). The in vitro drug release studies of 5FU–GKPtNP in pH 7.4 showed a sustained release profile over a period of 120 min. Agrobacterium tumefaciens induced in vitro potato tumour bioassay was employed for screening the anti‐tumour potentials of GKPtNP, 5FU, and 5FU–GKPtNP. The experimental results suggested a complete tumour inhibition by 5FU–GKPtNP at a lower concentration than the GKPtNP and 5FU. Furthermore, the mechanism of anti‐tumour activity was assessed by their interactions with DNA using agarose gel electrophoresis and UV‐spectroscopic analysis. The electrophoresis results revealed that the 5FU–GKPtNP totally diminishes DNA and the UV‐spectroscopic analysis showed a hyperchromic effect with red shift indicating intercalation type of binding with DNA. Over all, the present study revealed that the combined exposure of the nanoformulation resulted in the enhanced anti‐tumour effect. Inspec keywords: nanoparticles, transmission electron microscopy, biomedical materials, tumours, ultraviolet spectra, DNA, drugs, electrophoresis, polymers, platinum, pH, drug delivery systems, biochemistry, X‐ray chemical analysis, microorganisms, molecular biophysics, electrokinetic effects, X‐ray diffraction, scanning electron microscopy, cancer, nanofabrication, visible spectra, nanomedicine, Fourier transform infrared spectra, materials preparationOther keywords: 5FU–GKPtNP, 5‐fluorouracil loaded platinum nanoparticles, gum kondagogu platinum nanoparticles, antitumour activity, scanning electron microscopy‐energy dispersive X‐ray spectroscopy, biopolymer‐based platinum nanoparticles, biopolymer‐based platinum nanoparticles, ultraviolet‐visible spectroscopy, UV‐visible spectroscopy, transmission electron microscopy, X‐ray diffraction, zeta potential, Fourier transform infrared spectroscopy, inductively coupled plasma mass spectroscopy, nanomedicine, in vitro drug release studies, sustained release profile, Agrobacterium tumefaciens, in vitro potato tumour bioassay, tumour inhibition, tumour activity, agarose gel electrophoresis, UV‐spectroscopic analysis, DNA, time 120.0 min, Pt
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号