首页 | 本学科首页   官方微博 | 高级检索  
     


Modelling epigenetic regulation of gene expression in 12 human cell types reveals combinatorial patterns of cell‐type‐specific genes
Authors:Yiming Lu  Wubin Qu  Bo Min  Zheyan Liu  Changsheng Chen  Chenggang Zhang
Affiliation:1. State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing 100850 People''s Republic of China ; 2. Department of Health Statistics, School of Military Preventive Medicine, Fourth Military Medical University, Xi''an 710032 People''s Republic of China
Abstract:The maintenance of the diverse cell types in a multicellular organism is one of the fundamental mysteries of biology. Modelling the dynamic regulatory relationships between the histone modifications and the gene expression across the diverse cell types is essential for the authors to understand the mechanisms of the epigenetic regulation. Here, the authors thoroughly assessed the histone modification enrichment profiles at the promoters and constructed quantitative models between the histone modification abundances and the gene expression in 12 human cell types. The author''s results showed that the histone modifications at the promoters exhibited remarkably cell‐type‐dependent variability in the cell‐type‐specific (CTS) genes. They demonstrated that the variable profiles of the modifications are highly predictive for the dynamic changes of the gene expression across all the cell types. Their findings revealed the close relationship between the combinatorial patterns of the histone modifications and the CTS gene expression. They anticipate that the findings and the methods they used in this study could provide useful information for the future studies of the regulatory roles of the histone modifications in the CTS genes.Inspec keywords: cellular biophysics, genetics, genomics, physiological models, proteinsOther keywords: CTS gene expression, variable profiles, cell‐type‐dependent variability, histone modification abundances, constructed quantitative models, promoters, histone modification enrichment profiles, dynamic regulatory relationship modelling, biology, multicellular organism, cell‐type‐specific genes, combinatorial patterns, human cell types, epigenetic regulation modelling
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号