首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization and Physical Explanation of Energetic Particles on Planck HFI Instrument
Authors:A. Catalano  P. Ade  Y. Atik  A. Benoit  E. Bréele  J. J. Bock  P. Camus  M. Charra  B. P. Crill  N. Coron  A. Coulais  F.-X. Désert  L. Fauvet  Y. Giraud-Héraud  O. Guillaudin  W. Holmes  W. C. Jones  J.-M. Lamarre  J. Macías-Pérez  M. Martinez  A. Miniussi  A. Monfardini  F. Pajot  G. Patanchon  A. Pelissier  M. Piat  J.-L. Puget  C. Renault  C. Rosset  D. Santos  A. Sauvé  L. Spencer  R. Sudiwala
Affiliation:1. Laboratoire de Physique Subatomique et de Cosmologie, Institut National Polytechnique de Grenoble, CNRS/IN2P3, Université Joseph Fourier Grenoble, 53 rue des Martyrs, 38026?, Grenoble Cedex, France
2. School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA, UK
3. Institut d’Astrophysique Spatiale, CNRS (UMR8617), Université Paris-Sud 11, Batiment 121, Orsay, France
4. Institut Néel, CNRS, Université Joseph Fourier Grenoble I, 25 rue des Martyrs, Grenoble, France
5. Astroparticule et Cosmologie, CNRS (UMR 7164), Université Denis Diderot Paris 7, Batiment Condorcet, 10 rue A. Domon et Leonie Duquet, Paris, France
6. California Institute of Technology, 1200 E California Blvd, Pasadena, CA, USA
7. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, USA
8. LERMA, CNRS, Observatoire de Paris, 61 avenue de l’Observatoire, Paris, France
9. Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Grenoble 1/CNRS-INSU, UMR 5274, Université Joseph Fourier, 38041?, Grenoble, France
10. ESTEC, European Space Agency, Keplerlaan 1, 2201?AZ?, Noordwijk, The Netherlands
11. Department of Physics, Princeton University, Princeton, NJ, USA
12. CNRS, IRAP, 9 Av. colonel Roche, BP 44346, 31028?, Toulouse Cedex 4, France
Abstract:The Planck High Frequency Instrument (HFI) has been surveying the sky continuously from the second Lagrangian point (L2) between August 2009 and January 2012. It operates with 52 high impedance bolometers cooled at 100 mK in a range of frequency between 100 GHz and 1 THz with unprecedented sensitivity, but strong coupling with cosmic radiation. At L2, the particle flux is about 5 (hbox {cm}^{-2},hbox {s}^{-1}) and is dominated by protons incident on the spacecraft. Protons with an energy above 40 MeV can penetrate the focal plane unit box causing two different effects: glitches in the raw data from direct interaction of cosmic rays with detectors (producing a data loss of about 15 % at the end of the mission) and thermal drifts in the bolometer plate at 100 mK adding non-Gaussian noise at frequencies below 0.1 Hz. The HFI consortium has made strong efforts in order to correct for this effect on the time ordered data and final Planck maps. This work intends to give a view of the physical explanation of the glitches observed in the HFI instrument in-flight. To reach this goal, we performed several ground-based experiments using protons and (alpha ) particles to test the impact of particles on the HFI spare bolometers with a better control of the environmental conditions with respect to the in-flight data. We have shown that the dominant part of glitches observed in the data comes from the impact of cosmic rays in the silicon die frame supporting the micro-machined bolometric detectors propagating energy mainly by ballistic phonons and by thermal diffusion. The implications of these results for future satellite missions will be discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号