首页 | 本学科首页   官方微博 | 高级检索  
     


On the modeling of electro-hydrodynamic flow in a wire-plate electrostatic precipitator
Authors:Young Nam Chun  Dong Seok Yeom
Affiliation:(1) Department of Environmental Engineering, Chosun University, Seosuk-dong, 501-759 Gwangju, Korea;(2) ACT2000, 290-1, Geoyeo-dong, 138-110 Seoul, Korea
Abstract:Modeling of the flow velocity fields for the electrohydrodynamic (EHD) flow in a wire-to-plate type electrostatic precipitator (ESP) was achieved. Solutions of the steady, two-dimensional Navier-Stokes equations have been computed. The equations were solved in the conservative finite-difference form on a fine uniform rectilinear grid of sufficient resolution to accurately capture the momentum boundary layers. The numerical procedure for differential equations was used by SIMPLEST [Michel, 2002], a derivative of Patankar’s SIMPLE algorithm, to bring rapid convergence. The Phoenics (Version 3.5.1) CFD code, coupled with Poisson’s and ion transport equations and electric body force in the momentum equation, developed in this study, was used for the numerical simulation. From calculations for the flow employing different flow models, the Chen-Kimk-ε turbulent model appeared to be the most appropriate choice to obtain a quantitative image of the resulting mean flow field and downstream wake flow of the rear wire, although this was obtained from a qualitative analysis due to the lack of experimental verification. The flow velocity field pattern showed a strong EHD secondary flow, which was clearly visible in the downstream regions of the corona wire despite the low Reynolds number for the electrode (ReCW=12.4). Secondary flow vortices were also caused by the EHD with increases in the discharge current
Keywords:EHD  ESP  Chen-Kim Model  Modeling  Von-Karman Vortex
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号