首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传神经网络的大豆叶片病斑图像分割技术研究
引用本文:沈维政,王艳,纪楠. 基于遗传神经网络的大豆叶片病斑图像分割技术研究[J]. 自动化技术与应用, 2013, 0(11): 11-14,23
作者姓名:沈维政  王艳  纪楠
作者单位:东北农业大学电气与信息学院,黑龙江哈尔滨150030
基金项目:黑龙江省青年科学基金项目(QC2010077);哈尔滨市创新人才研究专项资金(2013RFQXJ033)
摘    要:针对作物叶部病斑区域图像边界模糊和不确定性等因素,以大豆病叶为对象,提出采用遗传神经网络对叶片病斑进行分割的方法,引入遗传算法优化神经网络的权值和阈值,提高了网络训练速度,避免了传统BP算法的局部最小值.通过对大豆灰斑病病斑图像分割的实验表明,该方法速度快且稳定性好,精度高且鲁棒性好.

关 键 词:图像分割  叶片病斑  大豆  神经网络

The Method of Soybean Leaf Disease Image Segmentation Based on Genetic Neural Network
SHEN Wei-zheng,WANG Yan,JI Nan. The Method of Soybean Leaf Disease Image Segmentation Based on Genetic Neural Network[J]. Techniques of Automation and Applications, 2013, 0(11): 11-14,23
Authors:SHEN Wei-zheng  WANG Yan  JI Nan
Affiliation:1.College of Electrical and Information, Northeast Agricultural University, Harbin 150030 China;)
Abstract:To solve the problem of crop leaf disease image with indistinct or uncertainty boundary,this paper presents to use threshold segmentation method to separate soybean disease leaves from the background,and then to use genetic neural network approach to separate the lesion from the leaves.The use of genetic algorithm helps to realize structure design and weight value learning of neural network of mottle segmentation.This method can overcome the disadvantages of human beings' defining structure when designing neural networks in the past,and can effectively shorten the time of neural network design and training.Experiments show that by using this method to segment mottle with high efficiency,it can fully meet the requirements of soybean leaf disease diagnosis.
Keywords:image segmentation  leaf disease  soybean  neural network
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号