首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of ion implantation energy for the synthesis of Ge nanocrystals in SiN films with HfO2/SiO2 stack tunnel dielectrics for memory application
Authors:Bhabani Shankar Sahu  Florence Gloux  Abdelilah Slaoui  Marzia Carrada  Dominique Muller  Jesse Groenen  Caroline Bonafos  Sandrine Lhostis
Affiliation:1.InESS, UDS-CNRS,Strasbourg,France;2.Groupe Nanomat, CEMES-CNRS,Université de Toulouse,Toulouse,France;3.ST Microelectronics,Crolles,France
Abstract:Ge nanocrystals (Ge-NCs) embedded in SiN dielectrics with HfO2/SiO2 stack tunnel dielectrics were synthesized by utilizing low-energy (≤5 keV) ion implantation method followed by conventional thermal annealing at 800°C, the key variable being Ge+ ion implantation energy. Two different energies (3 and 5 keV) have been chosen for the evolution of Ge-NCs, which have been found to possess significant changes in structural and chemical properties of the Ge+-implanted dielectric films, and well reflected in the charge storage properties of the Al/SiN/Ge-NC + SiN/HfO2/SiO2/Si metal-insulator-semiconductor (MIS) memory structures. No Ge-NC was detected with a lower implantation energy of 3 keV at a dose of 1.5 × 1016 cm-2, whereas a well-defined 2D-array of nearly spherical and well-separated Ge-NCs within the SiN matrix was observed for the higher-energy-implanted (5 keV) sample for the same implanted dose. The MIS memory structures implanted with 5 keV exhibits better charge storage and retention characteristics compared to the low-energy-implanted sample, indicating that the charge storage is predominantly in Ge-NCs in the memory capacitor. A significant memory window of 3.95 V has been observed under the low operating voltage of ± 6 V with good retention properties, indicating the feasibility of these stack structures for low operating voltage, non-volatile memory devices.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号