首页 | 本学科首页   官方微博 | 高级检索  
     

模糊强化学习型的图像矢量量化算法
引用本文:姜来,许文焕,纪震,张基宏. 模糊强化学习型的图像矢量量化算法[J]. 电子学报, 2006, 34(9): 1738-1741
作者姓名:姜来  许文焕  纪震  张基宏
作者单位:深圳大学信息工程学院,广东深圳,518060;深圳大学信息工程学院,广东深圳,518060;深圳大学信息工程学院,广东深圳,518060;深圳大学信息工程学院,广东深圳,518060
基金项目:国家自然科学基金,国家重点实验室基金,广东省"千、百、十"工程优秀人才基金
摘    要:本文给出了一种新的图像矢量量化码书的优化设计方法.传统矢量量化方法只考虑了码字与训练矢量之间的吸引影响,所以约束了最优解的寻解空间.本文提出了一种新的学习机理--模糊强化学习机制,该机制在传统的吸引因子基础上,引入新的排斥因子,极大地释放了吸引因子对最优解的寻解空间的约束.新的模糊强化学习机制没有采用引入随机扰动的方法来避免陷入局部最优码书,而是通过吸引因子和排斥因子的合力作用,较准确地确定了每个码字的最佳移动方向,从而使整体码书向全局最优解靠近.实验结果表明,基于模糊强化学习机制的矢量量化算法始终稳定地取得显著优于模糊K-means算法的性能,较好地解决了矢量量化中的码书设计容易陷入局部极小和初始码书影响优化结果的问题.

关 键 词:矢量量化  图像编码  模糊强化学习  吸引因子  排斥因子
文章编号:0372-2112(2006)09-1938-04
收稿时间:2005-10-11
修稿时间:2005-10-112006-06-19

A New Method of Image Vector Quantization Using Fuzzy Reinforced Learning
JIANG Lai,XU Wen-huan,JI Zhen,ZHANG Ji-hong. A New Method of Image Vector Quantization Using Fuzzy Reinforced Learning[J]. Acta Electronica Sinica, 2006, 34(9): 1738-1741
Authors:JIANG Lai  XU Wen-huan  JI Zhen  ZHANG Ji-hong
Affiliation:Faculty of Information Engineering, Shenzhen University,Shenzhen, Guangdong 518060, China
Abstract:This paper presents a new method toward the design of optimized codebooks by vector quantization(VQ).The conventional VQ techniques is easy to converge in a local optimum codebook,which is near to the initial codebook because only the attraction of each training vector and codevector is considered in these techniques.A strategy of fuzzy reinforced learning(FRL) is proposed where not only the attractive factor but repulsive factor are integrated into each iteration of FRL.Codevectors move intelligently and intentionally toward an improved optimum codebook(design).Within each iteration of FRL,the size and the direction of the movement of each codevector is determined by(the) overall pairwise competition between the attractive factor of each training vector and the repulsive factor of its(corresponding) winning codevector.This new fuzzy reinforced learning vector quantization(FRLVQ) is distinct from some improved VQ techniques in which only randomly generated perturbation is applied to the codebook at each (iteration).Experiment results have demonstrated that FRLVQ reduces not only its tendency of becoming trapped in a(local) optimum but its dependence in the selection of the initial codebook.The consistently superior results are obtained by FRLVQ in comparison with the behavior of well-known fuzzy K-means algorithm.
Keywords:vector quantization   image coding   fuzzy reinforced learning   attractive factor   repulsive factor
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号