摘 要: | 数据驱动的机器学习是新一代人工智能的核心技术,尽管该技术已经在电网调控领域取得了显著成果,但是可解释性差,阻碍了其在对安全可靠性要求极高的电网调控领域的实际工程应用。因此,提升电网调控领域机器学习技术的可解释性对提高其实用性至关重要。首先,从电网调度运行人员的角度,分析了机器学习可解释性的定义、目标和意义;然后,提出考虑可解释性的机器学习在电网调控领域应用的流程,介绍了典型的机器学习解释技术及其在电力系统预测和稳定评估场景的应用,通过实际案例验证了该技术在电网调控领域应用的可行性;最后,对电网调控领域机器学习可解释技术面临的挑战进行了分析和展望。通过该研究,为解决电网调控领域机器学习应用的不可解释问题提供思路和参考,进一步促进机器学习技术在该领域的实际工程应用。
|