首页 | 本学科首页   官方微博 | 高级检索  
     


Microstructural damage and residual mechanical properties in helium-bearing gas metal Arc weldments
Authors:S H Goods  N Y C Yang
Affiliation:(1) Engineering Materials Division, Sandia National Laboratories, 94551 Livermore, CA
Abstract:The influence of entrapped helium on microstructural damage and residual mechanical properties subsequent to applying low-penetration gas metal arc (GMA) weld overlays was examined for an AISI Type 304 stainless steel. Two helium levels were examined: 22.5 and 85.0 atomic parts per million (appm) He. Detailed scanning electron microscopy (SEM) revealed the presence of intergranular cracks in the weld heat-affected zone (HAZ). The crack surfaces exhibited a dimple structure that was characteristic of a gas bubble embrittled material. Transmission electron microscopy (TEM) revealed that the size and spacing of the grain boundary helium gas bubbles remained virtually unchanged (relative to that established by the charging and aging procedure) at distances greater than 1 mm from the fusion line. Within this first millimeter, the diameter of the bubbles increased rapidly, and the bubble spacing increased to the characteristic spacing of the dimples that decorated weld-induced cracks. Mechanical testing revealed a loss in strain-to-fracture and ultimate tensile strength (UTS) at the higher helium level. While the majority of the fracture occurred in a transgranular, ductile manner, some deformation-induced intergranular cracking was observed. This cracking occurred over a very narrow region localized to the HAZ of the weldment. At the lower helium level, ductility and strength were unaffected compared to helium-free specimens.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号