首页 | 本学科首页   官方微博 | 高级检索  
     


The use of an oil-absorber-bioscrubber system during biodegradation of sequentially alternating loadings of 1,2-dichloroethane and fluorobenzene in a waste gas
Authors:Michalis Koutinas  Andrea Meniconi  Athanasios Mantalaris  Andrew G. Livingston
Affiliation:a Department of Chemical Engineering and Chemical Technology, Imperial College London, SW7 2AZ London, UK
b Dipartimento di Ingegneria Chimica Mineraria e delle Tecnologie Ambientali, Università degli Studi di Bologna, Viale Risorgimento, 2-40136 Bologna, Italy
c Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
Abstract:This work seeks to improve the robustness of vapour phase bioscrubbing by applying an absorber prior to a bioscrubber during the dynamic treatment of sequentially alternating loads of inhibitory pollutants. Rhizobiales sp. strain F11 and Xanthobacter autotrophicus sp. GJ10, exhibiting specific degradation capabilities for fluorobenzene (FB) and 1,2-dichloroethane (DCE), respectively, were used as a compound-strain model system. The stability of a combined oil-absorber-bioscrubber (OAB) was compared to the stability of a bioscrubber only (BO) system, during sequentially alternating periods (duration 3-6 d) of FB and DCE in the gas feed. The OAB achieved >66% degradation of FB, while in the BO system the FB removal efficiency dropped to 0% upon restoring FB feed after a 3 d FB starvation period. Following 6 d of FB starvation the BO failed to recover within 10 d, while the OAB required only 2 d to recover. In contrast, during the DCE treatment periods the OAB system did not show any advantage over the BO system. Further investigation showed that the F- (a main metabolic product from FB degradation) has a strong inhibitory effect on strain GJ10 even at concentrations below View the MathML source. In the OAB system the inhibitory effect persisted for longer periods due to the absorber, which continued to supply FB to the system, and caused deterioration in the DCE removal efficiency. The inhibition of the microbial culture was confirmed by fluorescence in situ hybridisation (FISH), which showed that the activity of cells was reduced when only FB was fed. The results of this study have shown that in the presence of an inhibitory metabolic product the OAB system may not effectively improve the biological treatment of waste gas during sequential alternations in the feed of inhibitory pollutants.
Keywords:1,2-Dichloroethane   Fluorobenzene   Absorption   Bioreactors   Environment   Molecular biology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号