首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波变换和混合神经网络的短期负荷预测
引用本文:尹成群,康丽峰,李丽,王红云. 基于小波变换和混合神经网络的短期负荷预测[J]. 电力自动化设备, 2007, 27(5): 40-44
作者姓名:尹成群  康丽峰  李丽  王红云
作者单位:华北电力大学,电子与通信工程系,河北,保定,071003;华北电力大学,电子与通信工程系,河北,保定,071003;华北电力大学,电子与通信工程系,河北,保定,071003;华北电力大学,电子与通信工程系,河北,保定,071003
摘    要:提出通过小波分解对各负荷子序列进行特性分析初选影响因素后,采用信息熵法从初选变量中自动筛选出对负荷较重要的因素,然后采用改进的主成分分析法消除重要影响因素间的相关性,采用动态聚类法对各分解序列的样本归类,通过灰色关联分析选择出与预测时刻负荷模式最相似的类作为神经网络训练的典型样本集,采用蚁群优化算法训练各子序列相应神经网络模型,采用小波重构得到最终负荷预测结果。并利用某地区1999年的实际负荷对所提方法进行验证,结果表明了该方法的合理性和有效性。

关 键 词:负荷预测  小波变换  信息熵  主成分分析  动态聚类法  蚁群优化算法
文章编号:1006-6047(2007)05-0040-05
收稿时间:2006-09-06
修稿时间:2006-09-062007-02-02

Short-term load forecast based on combination of wavelet transform and hybrid neural network
YIN Cheng-qun,KANG Li-feng,LI Li,WANG Hong-yun. Short-term load forecast based on combination of wavelet transform and hybrid neural network[J]. Electric Power Automation Equipment, 2007, 27(5): 40-44
Authors:YIN Cheng-qun  KANG Li-feng  LI Li  WANG Hong-yun
Affiliation:Department of Electronic and Communication Engineering,North China Electric Power University, Baoding 071003, China
Abstract:A hybrid load forecast method is put forward.The character analysis is carried out with wavelet decomposition for each load subsequence and influencing factors are thus determined,from which main factors are selected using the information entropy method and their relativity is eliminated using the improved principal component analysis method.The dynamic clustering analysis is used to divide the historical load data into several categories and the grey relative analysis to pick out one as the typical sample set,which is most similar to the forecasting load mode.The ant colony optimization algorithm is then used to train the corresponding neural network model of each decomposed subsequence and the wavelet reconstruction is used to achieve final forecasts.Actual loads of a district in 1999 are taken for verification,which shows the proposed method is rational and effective.
Keywords:load forecast  wavelet transform  information entropy  principal component analysis  dynamic clustering algorithm  ant colony optimization algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号