首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群算法和轮盘算法的多Agent Q学习
引用本文:孟祥萍,王圣镔,王欣欣. 基于蚁群算法和轮盘算法的多Agent Q学习[J]. 计算机工程与应用, 2009, 45(16): 60-62. DOI: 10.3778/j.issn.1002-8331.2009.16.016
作者姓名:孟祥萍  王圣镔  王欣欣
作者单位:长春工程学院,电气与信息学院,长春,130012;东北电力大学,信息工程学院,吉林,132012
基金项目:吉林省科技发展计划项目 
摘    要:提出了一种新颖的基于Q-学习、蚁群算法和轮盘赌算法的多Agent强化学习。在强化学习算法中,当Agent数量增加到足够大时,就会出现动作空间灾难性问题,即:其学习速度骤然下降。另外,Agent是利用Q值来选择下一步动作的,因此,在学习早期,动作的选择严重束缚于高Q值。把蚁群算法、轮盘赌算法和强化学习三者结合起来,期望解决上述提出的问题。最后,对新算法的理论分析和实验结果都证明了改进的Q学习是可行的,并且可以有效地提高学习效率。

关 键 词:多Agent强化学习算法  蚁群算法  轮盘赌算法
收稿时间:2008-04-11
修稿时间:2008-6-18 

Multiagent Q-learning based on ant colony algorithm and roulette algorithm
MENG Xiang-ping,WANG Sheng-bin,WANG Xin-xin. Multiagent Q-learning based on ant colony algorithm and roulette algorithm[J]. Computer Engineering and Applications, 2009, 45(16): 60-62. DOI: 10.3778/j.issn.1002-8331.2009.16.016
Authors:MENG Xiang-ping  WANG Sheng-bin  WANG Xin-xin
Affiliation:1.Department of Electrical Engineering,Changchun Institute of Technology,Changchun 130012,China 2.Department of Computer Engineering,Northeast Dianli University,Jilin 132012,China
Abstract:Authors present a novel Multiagent Reinforcement Learning Algorithm based on Q-Learning,ant colony algorithm and roulette algorithm.In reinforcement learning algorithm,when the number of agents is large enough,all of the action selection methods will be failed:the speed of learning is decreased sharply.Besides,as the Agent makes use of the Q value to choose the next action,the next action is restrainted seriously by the high Q value,in the prophase.So,authors combine the ant conlony algorithm,roulette algor...
Keywords:multiagent reinforcement learning algorithm  ant colony algorithm  roulette algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号