首页 | 本学科首页   官方微博 | 高级检索  
     


AFM characterization of model nuclear fuel oxide multilayer structures modified by heavy ion beam irradiation
Authors:M.E. Hawley  D.J. Devlin  C.J. Reichhardt  K.E. Sickafus  I.O. Usov  J.A. Valdez  Y.Q. Wang
Affiliation:Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Abstract:This work explored a potential new model dispersion fuel form consisting of an actinide material embedded in a radiation tolerant matrix that captures fission products (FPs) and is easily separated chemically as waste from the fuel material. To understand the stability of this proposed dispersion fuel form design, an idealized model system composed of a multilayer film was studied. This system consisted of a tri-layer structure of an MgO layer sandwiched between two HfO2 layers. HfO2 served as a surrogate fissile material for UO2 while MgO represented a stable, fissile product (FP) getter that is easily separated from the fissile material. This type of multilayer film structure allowed us to control the size of and spacing between each layer. The films were grown at room temperature by e-beam deposition on a Si(1 1 1) substrate and post-annealed annealing at a range of temperatures to crystallize the HfO2 layers. The 550 °C annealed sample was subsequently irradiated with 10 MeV Au3+ ions at a range of fluences from 5 × 1013 to 3.74 × 1016 ions/cm2. Separate single layer constituent films and the substrate were also irradiated at 5 × 1015 and 8 × 1014 and 2 × 1016, respectively. After annealing and irradiation, the samples were characterized using atomic force imaging techniques to determine local changes in microstructure and mechanical properties. All samples annealed above 550 °C cracked. From the AFM results we observed both crack healing and significant modification of the surface at higher fluences.
Keywords:Metal oxide films   Radiation effects   Heavy ions   Atomic force microscopy   Surface modification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号