首页 | 本学科首页   官方微博 | 高级检索  
     


On the microstructure-polarization behavior correlation of a 9Cr-1Mo steel weld joint
Authors:G George  H Shaikh  N Parvathavarthini  R P George  H S Khatak
Affiliation:(1) Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, 603 102 Kalpakkm, Tamil Nadu, India
Abstract:The use of 9Cr-1Mo ferritic steel necessitates its fabrication by the process of welding. The heat-affected zone (HAZ) of 9Cr-1Mo ferritic steel is a combination of many microstructures. In the present study, the corrosion properties of the base metal, weld metal, and the various regions of the HAZ are assessed with respect to their microstructures. The various microstructures in the HAZ were simulated by heat treatment of the normalized and tempered base metal at 1463, 1200, and 1138 K for 5 min followed by oil quenching. The microstructure of the base metal in the normalized and tempered condition revealed martensite laths with M23C6 carbides at lath boundaries, and uniform dispersion of fine, acicular M2C. The weld metal showed predominantly martensitic structure with dispersion of carbides. Simulation of the microstructures of the HAZ by heat treatment resulted in the following microstructures: coarse-grained martensite of 75 μm size at 1463 K, fine-grained martensite at 1200 K, and martensite + proeutectoid α-ferrite at 1138 K. In all cases, carbide precipitation was observed in the martensitic matrix. Microhardness measurements of HAZ-simulated base metal showed increasing hardness with increasing heat treatment temperature. The hardness values obtained corresponded very well with the regions of the actual HAZ in the weld joint. Electrochemical polarization studies were carried out on the base metal, weld metal, weldment (base metal + weld metal + HAZ), and the simulated HAZ structures in 0.5 M sulfuric acid solution. Critical current densities (i crit1 and i crit2), passive current densities (i pass and i sec-pass), and transpassive potential (E tp) were the parameters considered for evaluating the corrosion resistance. The HAZ structures simulated at 1463 and 1200 K, corresponding to coarse- and fine-grained martensitic regions of an actual HAZ, had corrosion properties as good as the normalized and tempered base metal. Of the various simulated HAZ structures, the intercritical region, which was simulated at 1138 K, possessed the worst corrosion resistance. The weld metal possessed the worst corrosion resistance of the various microstructural regions in the weld joint. The weldment adopted the degraded corrosion properties of the weld metal.
Keywords:coarse-grained martensite  fine-grained martensite  intercritical region  polarization behavior  transpassive potential
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号