首页 | 本学科首页   官方微博 | 高级检索  
     

基于噪声与图像同步迭代来确定时间步进法的规整化参数
引用本文:刘鹏, 刘定生, 李国庆. 基于噪声与图像同步迭代来确定时间步进法的规整化参数[J]. 电子与信息学报, 2009, 31(7): 1711-1715. doi: 10.3724/SP.J.1146.2008.00582
作者姓名:刘鹏  刘定生  李国庆
作者单位:1. 中国科学院对地观测与数字地球科学中心,北京,100086;中国科学院电子学研究所,北京,100190
2. 中国科学院对地观测与数字地球科学中心,北京,100086
基金项目:国家863计划项目资助课题
摘    要:为了在反卷积过程中正确地估计噪声的方差,该文构造一幅纯噪声图像跟实际的观测图像同步进行反卷积计算,并把纯噪声图像的方差作为观测图像中噪声方差的估计值来辅助计算规整化参数。针对规整化的各项异性,该文提出了能够保持两种噪声同步变化的特殊的规整化项。新的规整化项在迭代纯粹噪声图像时使用,这样确保每次迭代都可以保持人工噪声与实际图像噪声的统计特性相一致。在能够准确知道迭代过程中图像包含噪声的方差的时候,该文建立了规整化参数与图像噪声方差之间的关系式并转化成简单的解一元二次方程问题。实验证明新的算法不但更好地抑制了噪声而且避免了过平滑,基于时间步进法计算变分图像恢复的适应性被明显的提高了。

关 键 词:图像恢复  规整化参数  变分法
收稿时间:2008-05-14
修稿时间:2009-01-15

Selecting Regularization Parameter in Time Marching Method Based on the Synchronous Iteration of Noise and Image
Liu Peng, Liu Ding-sheng, Li Guo-qing. Selecting Regularization Parameter in Time Marching Method Based on the Synchronous Iteration of Noise and Image[J]. Journal of Electronics & Information Technology, 2009, 31(7): 1711-1715. doi: 10.3724/SP.J.1146.2008.00582
Authors:Liu Peng  Liu Ding-sheng  Li Guo-qing
Affiliation:Center for Earth Observation and Digital Earth Chinese Academy of Science, Beijing 100086, China; Institute of Electronics Chinese Academy of Sciences, Beijing 100190, China
Abstract:In order to correctly estimate the variance of noise in iteration, a pure synthesis noise as an image is synchronously iterated with the observation image in de-convolution, and it takes variance of pure noise image as the estimation of the variance of noise in observation image and computes the regularization parameter by the variance. A novel regularization term that can ensure the synchronous changing of the variance of the two noises is proposed in this article. The new regularization term is put into use only in iteration of pure noise image. Under the condition of knowing the variance of noise of image in iteration, this paper established the relationship between the variance of synthetic noise and the regularization parameter, and the relationship was converted to a simple quadratic equation. Experiments confirm that the new algorithm not only better restrains the noise but also avoids the over smoothing. The adaptability of total variation based image restoration is improved.
Keywords:Image restoration  Regularization parameter  Total variation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号