首页 | 本学科首页   官方微博 | 高级检索  
     

近红外光谱的ELM校正模型测定柴油凝点
引用本文:陈素彬,胡振. 近红外光谱的ELM校正模型测定柴油凝点[J]. 当代化工, 2017, 46(5). DOI: 10.3969/j.issn.1671-0460.2017.05.058
作者姓名:陈素彬  胡振
作者单位:南充职业技术学院,四川南充,637000
摘    要:为了简便、快速地测定柴油凝点,建立了一个基于ELM算法的近红外光谱校正模型。首先选择KS法按4:1划分样本集,并以"一阶导数+矢量归一化"方法进行光谱预处理;以校正集数据训练ELM模型并进行参数优化后,代入测试集光谱数据完成预测。通过136个柴油样品数据建模验证,结果表明用近红外光谱的ELM校正模型测定柴油凝点是完全可行的,且其准确度、稳健性和速度均优于PLSR模型和LS-SVM模型。

关 键 词:凝点  极限学习机  近红外光谱  校正模型

Determination of Diesel Freezing Point by ELM Calibration Model of Near-infrared Spectrum
CHEN Su-bin,HU Zhen. Determination of Diesel Freezing Point by ELM Calibration Model of Near-infrared Spectrum[J]. Contemporary Chemical Industry, 2017, 46(5). DOI: 10.3969/j.issn.1671-0460.2017.05.058
Authors:CHEN Su-bin  HU Zhen
Abstract:In order to conveniently and quickly determine diesel oil solidifying point,a NIRS calibration model based on ELM algorithm was established.Firstly,the KS method was used to divide the sample set by 4:1,and the spectrum was preprocessed by "first-order derivative + vector normalization" method.The ELM model was trained with the calibration set data and the parameters were optimized.The prediction was completed by substituting test set spectral data.The modeling validation of 136 diesel sample data was carried out.The results show that it is feasible to use near infrared spectroscopy ELM calibration model for determination of freezing point of diesel fuel.And its accuracy,robustness and speed are better than PLSR model and LS-SVM model.
Keywords:Freezing point  Extreme learning machine  Near-infrared spectrum  Calibration model
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号