首页 | 本学科首页   官方微博 | 高级检索  
     


A simple method for preparation of polymer microcellular foams by in situ generation of supercritical carbon dioxide from dry ice
Authors:Mehran Arab-Baraghi  Mahdi Mohammadizadeh  Reza Jahanmardi
Affiliation:1. Science and Research Branch, Department of Polymer Engineering, Islamic Azad University, P.O. Box 14155-4933, Tehran, Iran
Abstract:In this work, poly(methyl methacrylate) (PMMA) and PMMA/nanoclay nanocomposite microcellular foams were successfully prepared using a simple method based on in situ generation of supercritical carbon dioxide (CO2) from dry ice. The method was compared with conventional methods exempted from high pressure pump and a separate CO2 tank. Effect of various processing conditions such as saturation temperature and pressure and clay concentration on cellular morphology and hardness of the prepared microcellular foams was examined. State of the clay dispersion in the prepared PMMA/clay nanocomposites was characterized using X-ray diffraction and transmission electron microscopy techniques. Field emission scanning electron microscopy was used to study cellular morphology of the prepared foams. It was observed that elevation of saturation temperature from 85 to 105 °C at constant saturation pressure increased cell density and decreased average cell size of the prepared PMMA foams. Furthermore, an increase in saturation pressure from 120 to 180 bar resulted in a reduction in average cell diameter and an increase in cell density of the prepared PMMA foams. On the basis of the gathered results, optimum conditions for preparation of PMMA microcellular foams were determined and applied for preparation of PMMA/nanoclay microcellular foams. It was shown that incorporation of clay into the polymer matrix resulted in a finer and more uniform cellular morphology in the final microcellular foams. It was also observed that incorporation of nanoclay into the prepared foams, up to 3 wt%, led to a moderate increase in the foam hardness.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号