首页 | 本学科首页   官方微博 | 高级检索  
     

基于相关分析的多目标优化Pareto优劣性预测
引用本文:李文彬,贺建军,郭观七,冯彩英,潘理. 基于相关分析的多目标优化Pareto优劣性预测[J]. 电子学报, 2017, 45(2): 459-467. DOI: 10.3969/j.issn.0372-2112.2017.02.027
作者姓名:李文彬  贺建军  郭观七  冯彩英  潘理
作者单位:1. 中南大学信息科学与工程学院, 湖南长沙 410083;2. 湖南理工学院信息与通信工程学院, 湖南岳阳 414006
基金项目:国家自然科学基金,湖南省省教育厅科学研究重点项目,湖南省高校科技创新团队支持计划资助
摘    要:昂贵多目标进化算法中,目标向量评估所需计算时间或实验成本高昂,大量昂贵评估必然导致成本灾难.本文根据多目标优化Pareto优劣性取决于各目标分量的序关系这一关键性质,提出一种序拟合方法进行Pareto优劣性预测.在分析样本数据决策空间与目标空间序相关性的基础上,通过线性相关的假设条件,建立低成本的序关系预测方程,并用预测的序关系确定Pareto优劣性.然后对典型多目标优化问题进行Pareto优劣性预测对比实验,结果表明所提方法显著提高了Pareto优劣性的预测精度.最后,将该预测方法集成到NSGA-II算法中,可以避免进化过程中的模型重构,有效减少昂贵目标向量的评估次数.

关 键 词:相关分析  序关系预测  多目标优化  Pareto优劣性  
收稿时间:2015-05-11

Prediction of Pareto Dominance Based on Correlation Analysis
LI Wen-bin,HE Jian-jun,GUO Guan-qi,FENG Cai-ying,PAN Li. Prediction of Pareto Dominance Based on Correlation Analysis[J]. Acta Electronica Sinica, 2017, 45(2): 459-467. DOI: 10.3969/j.issn.0372-2112.2017.02.027
Authors:LI Wen-bin  HE Jian-jun  GUO Guan-qi  FENG Cai-ying  PAN Li
Affiliation:1. College of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China;2. College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
Abstract:In expensive multi-objective evolutionary algorithms,the evaluation of a large number of objective vectors spend a lot of time or experimental cost and lead to the cost of disaster.According to the fact that Pareto dominance relationships among candidate solutions are depended on the rank relationships of objective components,this paper proposes a predict method of rank equivalent to determine Pareto dominance.A decision vector and object vector rank matrix is established,and rank correlation analysis is used to calculate the correlation coefficient matrix R.Under the assumption of linear correlation,a prediction equation is established to predict rank relationships.Testing results on typical multi-objective optimization problems show that the proposed method only requires establishing a linear prediction model,which can remarkably improve the prediction accuracy and reduce the calculation of original expensive target function.Finally,the prediction method is integrated into the NSGA-II,it can avoid reconstruction the model in the process of evolution,then effectively decrease the number of evaluation for expensive objective vectors.
Keywords:correlation analysis  rank relation prediction  multi-objective optimization  Pareto dominance
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号